

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DETERMINATION OF HIGH-SPEED MULTIPLE
THREAT USING KALMAN FILTER ANALYSIS OF

MARITIME MOVEMENT

by

Joseph L. Carnes

June 2015

Thesis Advisor: David A. Garren
Co-Advisor: James W. Scrofani
Second Reader: Steven E. Pilnick

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202–4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704–0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2015

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
DETERMINATION OF HIGH-SPEED MULTIPLE THREAT USING KALMAN
FILTER ANALYSIS OF MARITIME MOVEMENT

5. FUNDING NUMBERS

6. AUTHOR(S) Joseph L. Carnes
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943–5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

A methodology for automatically detecting a swarm attack in the maritime domain is examined in this thesis. These
techniques are based upon feeding data into the Kalman filtering algorithm, which is used in the tracking of moving
targets based on simulated radar position measurements. Specifically, the expectation of a location of a given moving
vessel based upon the Kalman filtering estimates is used to determine if a strong maneuver is occurring. When a given
moving target’s motion lies outside of the estimated location zone, additional time is required for the estimated track
to synchronize the track with the current measurements for this particular moving target. The proposed use of this
algorithm is to provide an ability to monitor the maritime traffic within a given area of regard in order to determine if
a high-speed maneuvering surface target swarm attack is occurring. The software for this thesis involved the
development and testing of object-oriented source code in MATLAB. This work included the development of an
algorithm that monitors all traffic and generates a signal spike when a threat has been initiated. A notional gun system
was included in order to permit the calculation of survivability estimates when placed inside a larger Monte Carlo
simulation.

14. SUBJECT TERMS
Kalman filter, maritime, swarm threat, HSMST

15. NUMBER OF
PAGES

87
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540–01–280–5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DETERMINATION OF HIGH-SPEED MULTIPLE THREAT USING KALMAN
FILTER ANALYSIS OF MARITIME MOVEMENT

Joseph L. Carnes

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2015

Author: Joseph L. Carnes

Approved by: Dr. David A. Garren
Thesis Advisor

Dr. James W. Scrofani
Co-Advisor

Dr. Steven E. Pilnick
Second Reader

Dr. R. Clark Robertson
Chair, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

A methodology for automatically detecting a swarm attack in the maritime domain is

examined in this thesis. These techniques are based upon feeding data into the Kalman

filtering algorithm, which is used in the tracking of moving targets based on simulated

radar position measurements. Specifically, the expectation of a location of a given

moving vessel based upon the Kalman filtering estimates is used to determine if a strong

maneuver is occurring. When a given moving target’s motion lies outside of the

estimated location zone, additional time is required for the estimated track to synchronize

the track with the current measurements for this particular moving target. The proposed

use of this algorithm is to provide an ability to monitor the maritime traffic within a given

area of regard in order to determine if a high-speed maneuvering surface target swarm

attack is occurring. The software for this thesis involved the development and testing of

object-oriented source code in MATLAB. This work included the development of an

algorithm that monitors all traffic and generates a signal spike when a threat has been

initiated. A notional gun system was included in order to permit the calculation of

survivability estimates when placed inside a larger Monte Carlo simulation.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. THESIS OBJECTIVE ...2
B. RELATED WORK ..3

II. BACKGROUND ..5
A. HSMST THREAT ..5
B. KALMAN FILTERS ...6

III. KALMAN FILTER ...9

IV. IMPLEMENTATION AND RESULTS ..17
A. MATLAB MODEL ..17

1. MATLAB Interface ...18
2. Simulation/Input Parameters ...18

B. MODEL MODIFICATIONS AND RESULTS ...30

V. RESULTS ...37

VI. PROPOSED FUTURE WORK ..39

LIST OF REFERENCES ..65

INITIAL DISTRIBUTION LIST ...67

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

 Detail of the Kalman filter process. ...12 Figure 1.
 Demonstration of Kalman filter. ..13 Figure 2.
 Examination of un-optimized portion of a Kalman filter.13 Figure 3.
 Kalman filter with intentional change in direction. ...14 Figure 4.
 Enhancement of Kalman filter prediction during object direction change.15 Figure 5.
 Flowchart diagram of simulation environment. ...19 Figure 6.
 Starting points of scenario. Ownship, civilians, and threats are represented Figure 7.

by the blue circle, blue dots, and red dots, respectively.20
 Starting points of scenario with actual axes ratio. ...20 Figure 8.
 Gunfire representation. Ownship, in the blue circle, has destroyed a threat Figure 9.

ship, as represented with the red line. ..24
 Starting prediction (green marks). ...26 Figure 10.
 Closeup of Kalman prediction. Blue points represent actual Figure 11.

measurements, and green points represent predictions from the previous
measurement. ...26

 Kalman filter error measurements. This is the error amount in distance Figure 12.
from the previous prediction and the current measurement at the time
indicated. The red dots are threat tracks, and the blue dots are civilian
tracks. ...28

 Kalman error measurement at time of swarm attack. The red dots represent Figure 13.
threat tracks, and the blue dots represent civilian tracks. The red X
represent a threat track that has been identified as such. The error is
measured between the measurement predicted from the previous
measurement and current measurement. ..29

 Full simulation in which the ship survived, as none of the tracks reach the Figure 14.
blue circle, which represents ownship. ..31

 The Kalman error measurement in the aftermath of an attack.32 Figure 15.
 Failure due to insufficient Kalman deviation. Note that the ship has ample Figure 16.

time to fire but does not due to failure to classify the threat ship as such.
Upper image is at true ratio. ...33

 Close-up of threat that remained undetected. The blue line is the original Figure 17.
heading and green is after the attack commences. Note that it does not
deviate as severely as other threats pictured. ...34

 Catastrophic failure due to reload time increased to 15 seconds. Note the Figure 18.
large number of threats that are not destroyed and still arriving when the
ship is destroyed. ..34

 Simulation altered so threats attack closer to ownship in the middle of the Figure 19.
x-axis. ...35

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Specifications of NAVAIR HSMST analog vehicle, after [11].5
Table 2. MATLAB top level functional organization of the STC algorithm.18
Table 3. Model parameters...19
Table 4. Initial modeling conditions ..30
Table 5. First set of simulation runs. ..33
Table 6. Threats with center-spaced threats. ..36
Table 7. Threats with no Kalman filter. ...36

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

The High Speed, Maneuvering Surface Target (HSMST) swarm attack is one of the most

examined threats against the U.S. Navy today. The attack uses small, fast, cheap boats in

numbers great enough to overwhelm the defenses of a given target. These kinds of

attacks are typically used against High Value Assets (HVA), destroyers or larger. While

it would be easy to avoid such threats by operating a “Blue Water” navy in deep, open

ocean, such luxuries are not the reality for the current maritime force.

The extensive use of foreign ports and need to travel in commercial traffic lanes

results in naval ships being among civilian traffic. Navy vessels are the most vulnerable

when they are within proximity of this traffic, as the threats can hide in neutral traffic

until the time of attack. The ability to quickly determine when a ship is under swarm

attack and determine hostile actors increases the survivability of the ship under attack.

The objective of this thesis is to develop a method to automatically detect a

swarming event. The focus is on making such a method implementable, rather than

theoretical. This is accomplished by setting up a simulation in two parts: the simulated

portion and the tracker. Keeping the tracker ignorant of the simulation allows it to be

utilized in real-world situations as well as be fine-tuned by improving the data of the

simulation. This is accomplished by dynamically creating all of the tracks, both civilian

and threat, then inputting the various surface tracks into the tracker function, which

interprets all data without knowledge of which track is a civilian and which track is a

threat. In this way, evaluation can be conducted without bias.

Each object is monitored independently as an individual track, with each track

receiving its own Kalman filter position variables and weighting. This provides the

ability to judge whether or not the tracker is predicting the swarm event. The simulation

code is embedded inside a shell function that sets its random number and collects the

results. The starting variable is adjusted until individual metrics, such as mis-labelling

civilians, survivability, and minimum distance to threats can be evaluated in Monte Carlo

simulated scenarios or real-world data. As the script stands, each scenario is randomly

 xiv

generated, but if a corner case is found in which the HVA does not survive, a specific

scenario can be re-played by fixing the random number seed.

Fixed test threat scenarios can be used as inputs into the tracker to determine

feasibility with real data. All that is required is for the tracker to be fed the information

from prerecorded, as opposed to the randomly generated, data.

For this specific scenario, the ship is assumed to be moored and stationary, with

potential threats being monitored in the harbor channel. The goal is to identify all actors

and determine if threats can be identified before they leave the cover of civilian traffic.

From there, a gun system with modifiable parameters has been simulated and is used to

destroy the simulated threats. The gun has simulated limitations, such as reload and

retargeting. Areas of focus can be determined by the survivability percentages altered by

the adjustment of these variables.

Civilian traffic provide a low-level “murmur” of Kalman errors, with small

movement and measurement errors introduced, as might be expected in moving seas.

This also provides us with the possibility of civilian traffic being mistakenly classified as

a threat. While this is an interesting metric to collect, it can almost certainly be mitigated

in future iterations with additional logic in the code to filter false alarms with threatening

vs. nonthreatening direction determination.

The “spike” generated by the sudden errors in multiple threats is meant to be a

visual identification for the purposes of this thesis. A more efficient method of

establishing criteria to declare a swarm attack is expected to be the subject of future

research. A notional gun system with its own state machine is written in a separate

module to allow others to create a more detailed model that produces more realistic

survivability simulations.

The results of the randomly generated traffic indicate that this method of threat

determination is viable. While both measurement and movement errors result in the

occasional mis-labelling of civilian traffic as possible threats, the actual swarm event is

clearly detected against the random traffic movement errors, usually by a few orders of

magnitude.

 xv

It is not feasible to have an automated response connected with the tracker in its

present stage of development. It could, however, be easily turned into an automated

system to improve early detection of a swarm event and highlight possible hostile actors.

In the simulation, this detection occurs before the hostile actors have even left civilian

shipping lanes.

Doctrine that calls for a quick response increases survivability on a ship caught in

such a predicament. The model is built to simulate response time and react with gunfire.

In a realistic response, the “layered defense” currently employed by the Navy allows for

more options to deal with such a threat, and these can be added in future modifications of

the simulation.

Drastic improvement in survivability resulting from the quick identification of a

given swarm threat was shown. The additional time afforded the targeted ship allows it to

take out a greater number of hostile actors, which, in turn, improves the survivability of

the ship.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

My loving wife, Tabitha, has been my cheerleader throughout this entire process,

enduring many late nights during which I yelled at my computer, and pushing me through

when the lack of progress discouraged me. Without her love and support, I’d still be

contemplating an approach, and would not be the success I am. I only hope to show her

the same amount of encouragement and love with her challenges.

On a more platonic level, I’d like to send my appreciation and gratitude to all the

people who supported me at NPS, but especially to Mrs. Sue Hawthorne, Dr. David

Garren, Dr. James W. Scrofani, and Dr. Steven E. Pilnick at the Naval Postgraduate

School, who have courageously taken on the challenge of reading an engineer’s attempt

to explain himself through the medium of words.

And my mother, Mrs. Pauli Carnes, a retired English teacher, who, in addition to

helping me proofread the text, also reminded me throughout my math-heavy education

that I still need to know to spell reel goodly.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Arguably, the United States Navy’s last formal battles against an enemy nation-

state of any appreciable size in open water (a so-called “blue water” engagement) took

place during the Battle of Leyte Gulf. Since then, the Navy’s role has mainly been force

projection in support of ground troops. Instead, the Navy now must operate globally in

peacetime conditions. This makes them increasingly at risk to asymmetric warfare.

Asymmetric Warfare (or 4th Generation Warfare) thrives in a condition in which

militants and civilians are interspersed [1]. In such an environment, hostile actors can use

civilian actors to blend in, striking when conditions favor them. Suicide/Kamikaze style

tactics go beyond the actual damage inflicted and can have a demoralizing effect.

Today’s Navy is no longer one that can isolate itself from civilian traffic.

Peacetime Rules of Engagement, combined with international cooperation and travel

through civilian shipping lanes, means that Navy ships are among civilian ship traffic

more often than not. With visits to foreign ports of call, as well as repair/upgrade

facilities worldwide, today’s Navy needs to be able to react to a possible threat at any

given time.

One of the closely examined threats continues to be the High Speed, Maneuvering

Surface Target (HSMST) in a swarm configuration [2] [3]. Indeed, there is an exercise,

called SWARMEX (SWARM Exercise) dedicated to countering that threat [4]. The

CIWS Phalanx system, in wide use today, underwent a costly improvement to the 1B

variant in an attempt to counter such a threat [5].

The HSMST threat generally consists of a series of inexpensive, unarmored boats

rushing a given target ship. Individually, these boats do not pose a threat, as each can be

destroyed handily by the target ship before getting close enough to inflict damage;

however, the greater maneuverability, speed, and number of craft in a swarm likely will

ensure that at least one threat gets close enough to deliver the necessary destructive

elements (e.g., Rocket Propelled Grenade (RPG), missile launcher, or explosive laden for

a suicide run). In many cases, it would only take one boat getting through a target ship’s

 2

defenses to either seriously cripple or destroy the Navy vessel. In this manner, an attack

costing tens of thousands of dollars can inflict damage costing millions.

As an example, a gap study made in September 2008 details a Norwegian NATO

exercise in which a High Valued Asset (HVA) was engaged by a swarm of smaller boats

that were able to hit and retreat without being detected [3]. This study was conducted in a

fjord while the HVA was moving. When it was moored or anchored, the danger to the

HVA became more pronounced, as it had no opportunity to easily escape.

In congested waterways, the normal markers for hostile intent (closure
rate, erratic maneuvering, proximity, etc.) are also negated as chaotic
traffic is constantly moving in multiple directions. Maintaining Situational
Awareness (SA) is a problem for both bridge watch standers and the
personnel manning the Combat Information Center (CIC) as the number,
type and intent of surface vessels quickly becomes overwhelming. [3]

The objective of this thesis is to quantify and assist the warfighter with a detection

capability to help identify and narrow down the possible threats, as well as show a swarm

event as being detectable from civilian traffic before it emerges from the clutter. While

this is not intended to be used by itself, it would help in conjunction with other

discriminators to create a “weighting” to identify hostile actors in advance of such an

attack. In such a scenario, seconds count toward ownship survivability.

A. THESIS OBJECTIVE

The objective of this thesis is to show the ability to detect a swarming event and

identify the hostile actors while threat actors are still among civilian traffic. In this thesis,

the focus is specifically on movement patterns with no further knowledge of the target in

question. The size, shape, or classification of the actor is not a factor in detection of

hostile intent.

The Kalman filter is proposed as the method of choice for object travel prediction.

The filter, as well as all the simulated objects and gun system, are all modeled in

MATLAB.

 3

B. RELATED WORK

In the pursuit of solving the HSMST issue, focus has typically been placed on

counter-systems and fleet readiness, with the emphasis mostly on the creation of weapon-

systems that can counter such threats automatically (e.g., Phalanx Mod 2B, ship-mounted

Hellfire) [6].

William Shannon wrote a paper detailing the need to develop an anti-swarming

doctrine, but the paper mostly focuses on land battles, which have their own specific

concerns [7].

A paper written for the Naval Postgraduate School in 2002 by Daniel Cobian

detailed the possible use of the Javelin anti-tank missile for ship protection from

swarming threats [6].

Lokukaluge P. Perera et al. examined the use of a Kalman filter for maritime

detection. Their emphasis was on using the extended Kalman Filter based on curvilinear

motion [8].

Stateczny, A and Kazimierski, W. looked at the use of Kalman filtering in

maritime tracking but only for the application of fusing multiple sensors [9].

Steven Terjesen looked at the use of the Kalman filter for state estimation in

regards to small rigid hull inflatable boats [10]. The use of the Kalman filter in this paper

is also in regards to sensor fusion, similar to the Stateczny paper [9].

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. BACKGROUND

The attempts to solve the HSMST issue, as well as an explanation of the Kalman

Filter, are examined in this chapter.

A. HSMST THREAT

A Small Boat Swarmed attack is the application of Asymmetric Warfare in the

maritime environment. The term “small boat” is ambiguous, but typically means a boat

less than 50 feet long (typically, much shorter), usually either built or rigged to be fast

and maneuverable.

In this research, the definition from Naval Air Warfare Center Weapons Division

(NAWCWD) at Point Mugu, California, as per its simulated surface targets overview is

utilized. The specifications were detailed in the “Seaborne Target Overview” at the 41st

Annual NDIA Target’s UAV’s and Range Operations Symposium and Exhibition by

Jeffrey L. Blume, from NAWCWD [11], as seen in Table 1. The ships were used in an

exercise, called SWARMEX [4] (SWARM Exercise), intended to simulate exactly the

kind of swarming attack evaluated here. The most relevant aspect of the boat’s

specification is the speed, which is truncated to 20 m/s for the purposes of this simulation

[11].

Table 1. Specifications of NAVAIR HSMST analog vehicle, after [11].

Specification Measurement
Overall Length 7 meters
Beam 3 meters
Light Displacement 2 tons
Maximum speed 45+ knots

The main attacking criterion consist of multiple attackers that overwhelm a larger

ship’s multiple defenses, allowing at least one of the small boats to get within range of a

Rocket Propelled Grenade or even a suicidal attack. This approach has been used by the

Tamil Tigers [12], [13] and the Iranian Navy/Revolutionary Guard [14].

 6

While the Sri Lankan Navy did end up countering the threat posed by the HSMST

threat of the Sea Tigers, it did so using Swarm tactics of its own [15]. This tactic might be

effective for a smaller nation with limited borders to protect. The United States Navy,

with its wide reach and investment in larger ships, would not likely be able to employ

such tactics worldwide.

New weapon system research and development to counter the HSMST threat are

being considered [16]. This indicates that money and time are being spent on evaluating

and countering this threat.

B. KALMAN FILTERS

The Kalman filter is an algorithm used to track an item in linear motion [17]. It

can predict the next point in the case of linear motion with a surprisingly small amount of

information. It has been used in a wide variety of applications, ranging from radar

trackers to seismology [18].

The Kalman filter works by an estimation of an initial state, or “seeded” values.

Research can be conducted to determine approximately correct values for realistic

movement; however, no matter the starting conditions, the filter corrects itself given

enough time.

The procedure in a typical Kalman filter is a two-step process. When initial

conditions are set, the filter estimates the correct location for the next step. It also

generates/updates an estimate of the accuracy of the prediction, known as either a

“covariance matrix” or an “uncertainty matrix.”

A second measurement is then taken. The filter determines the amount of error,

then reassesses the uncertainty matrix of the previous estimate. It then uses that

measurement to estimate the next state. Depending on the initial values, the predictions

can vary drastically until settling in an almost steady-state.

The limits on this model are that all ships being tracked need to be moving in a

linear fashion, and the sampling rate needs to be known. Note that the sampling rate can

vary but needs to be known to pass to the uncertainty matrix. In the simulation used in

 7

this thesis, the boats are headed toward a fixed point on the border of the shipping lane,

and the sampling rate is fixed at once per second.

In a realistic situation, the sampling rate would change based on the speed of the

tracked ship in relation to ownship, as well as the variability of the sweep of the maritime

radar used. The simulation used assumes synchronous position updates on all tracks on

the water.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

III. KALMAN FILTER

One of the main advantages of the Kalman Filter is that it can continue to make

accurate predictions, even with noise introduced into the measurements. It can continue

to do the same with minor changes in movement, correcting and continuing to predict

along new headings/speeds.

The Kalman filter used is expanded from a basic, linear version for two reasons. It

allows for variance in velocity and tracking in two dimensions. [19].

The measured location in standard x-y coordinates is:

𝑀𝑀 = �
𝑥𝑥
𝑦𝑦� (1)

wherein 𝑥𝑥 is equal to the measured location with respect to the x-axis and 𝑦𝑦 is equal to

the measured location along the y-axis.

The predicted measurements are described by the matrix

𝑃𝑃 = �

𝑥𝑥
𝑦𝑦
�̇�𝑥
�̇�𝑦
�. (2)

in terms of the x-component of the velocity (i.e., �̇�𝑥), and the y-component of the velocity

(i.e., �̇�𝑦). These two velocity components are not needed initially and are auto-populated

in algorithm.

The bounds of allows noise allowed is described by the matrix:

𝐵𝐵 = �𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 0
0 𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

�. (3)

This matrix determines the maximum noise allowable before corrections must be applied

to the predictions, where 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the maximum permitted noise in the x-direction and

𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the maximum permitted noise in the y-direction.

The update-movement matrix is given by:

 10

𝑈𝑈 =

⎝

⎜
⎜
⎜
⎛

𝑑𝑑𝑑𝑑4

4
0 𝑑𝑑𝑑𝑑3

2
0

0 𝑑𝑑𝑑𝑑4

4
0 𝑑𝑑𝑑𝑑3

2
𝑑𝑑𝑑𝑑3

2
0 𝑑𝑑𝑑𝑑2 0

0 𝑑𝑑𝑑𝑑3

2
0 𝑑𝑑𝑑𝑑2⎠

⎟
⎟
⎟
⎞
⋅ 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 . (4)

This matrix determines the variance of each movement track in relation to one another in

both the x and y-direction, accounting for both position and velocity. The dispersion of

the “0”s indicate that there is no dependency between x and y, and all tracks can move

independently of each other, where 𝑑𝑑𝑑𝑑 is the time between sampling points, and 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is

the standard deviation of acceleration in (m/s2). The Covariance matrix 𝐶𝐶0 is initialized to

be equal to the update-movement matrix.

The state update matrix is given by:

𝑆𝑆 = �

1 0 𝑑𝑑𝑑𝑑 0
0 1 0 𝑑𝑑𝑑𝑑
0 0 1 0
0 0 0 1

�. (5)

This matrix is used to predict the next state from the previous state. Again, as x and y

positions and velocity have no bearing on each other, the pattern of “0”s ensures the

calculation of one is independent of the other.

The measurement function is described by the matrix:

𝐹𝐹 = �1 0 0 0
0 1 0 0�. (6)

The velocity matrix is given by:

𝑉𝑉 =

⎝

⎜
⎛

𝑑𝑑𝑑𝑑2

2
𝑑𝑑𝑑𝑑2

2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑⎠

⎟
⎞

. (7)

Each iteration of the Kalman filter is preceded by a new measurement.

 11

The Kalman filter can be expressed as the following steps:

1) Compute the movement prediction matrix by combining the state update matrix and

the value of the predicted movement matrix at the previous iteration via:

𝑀𝑀𝑝𝑝𝑝𝑝𝑛𝑛𝑑𝑑 = 𝑆𝑆 ∗ 𝑀𝑀𝑝𝑝𝑝𝑝𝑛𝑛𝑑𝑑
′ + 𝑉𝑉 ∗ 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚. (8)

where 𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum acceleration magnitude. The movement prediction matrix is

initialized at the first iteration with the value

𝑀𝑀𝑝𝑝𝑝𝑝𝑛𝑛𝑑𝑑
′= �

𝑥𝑥0
𝑦𝑦0
0
0

�.

2) Calculate the covariance matrix using:

𝐶𝐶 = 𝑆𝑆 ∗ 𝐶𝐶 ∗ 𝑆𝑆′ + 𝑈𝑈. (9)

Here, 𝐶𝐶 is initialized to be the same as the update-movement matrix (UMM) but is

changed as the equation updates.

The following steps attempt to adjust the predictions of the next state in light of

the accuracy of the present measurement.

3) The Kalman gain (G) is calculated from

𝐺𝐺 = 𝐶𝐶 ∗ 𝐹𝐹′(F ∗ 𝐶𝐶 ∗ F′ + 𝐵𝐵)−1. (10)

This updates the gain based on the covariance matrix and maximum noise figure.

4) The movement prediction is computed from

𝑀𝑀𝑝𝑝𝑝𝑝𝑛𝑛𝑑𝑑 = 𝑀𝑀𝑝𝑝𝑝𝑝𝑛𝑛𝑑𝑑 + 𝐺𝐺 ∗ �M − 𝐹𝐹 ∗ 𝑀𝑀𝑝𝑝𝑝𝑝𝑛𝑛𝑑𝑑�. (11)

The Movement Prediction is utilized primarily as an input into the next iteration of the

Kalman filter. If the Gain increases, that means the variability of the covariance matrix is

likewise increased as it is inaccurate.

5) The covariance matrix update is computed according to

 12

𝐶𝐶 =

⎝

⎜
⎛
�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

� − 𝐺𝐺 ∗ 𝐹𝐹

⎠

⎟
⎞
∗ 𝐶𝐶. (12)

At this point, the estimate of the next point can be determined as well as the current point.

The prediction is saved and is compared to the next measurement. This process is

detailed in Figure 1.

 Detail of the Kalman filter process. Figure 1.

A Kalman Filter in operation is shown in Figure 2. The object in motion moves at

a consistent pace, without diverting or altering course. Gaussian noise is introduced into

both the measurement as well as the motion itself. The error shown at first spikes, as seen

in greater detail in Figure 3 (red circles are estimates, green “X”s are measurements).

This is because the Kalman filter not optimized in the covariance matrix to anticipate the

actual ship motion; however, as the gain is adjusted, the filter prediction becomes more

accurate, resulting in a low, flat, error rate.

 13

 Demonstration of Kalman filter. Figure 2.

 Examination of un-optimized portion of a Kalman filter. Figure 3.

 14

The next modification is to introduce an intentional movement in the course of the

object, as seen in Figure 4. The difference between prediction and measurement results in

a spike in the error rate, shown in greater detail in Figure 5.

 Kalman filter with intentional change in direction. Figure 4.

 15

 Enhancement of Kalman filter prediction during object direction Figure 5.

change.

 16

THIS PAGE INTENTIONALLY LEFT BLANK

 17

IV. IMPLEMENTATION AND RESULTS

The Kalman Filter presented in Chapter III is implemented for use in this chapter.

MATLAB was used as the programming environment and test bed. Additionally, the

MATLAB code is provided and explained.

A. MATLAB MODEL

The MATLAB environment is divided into four parts for maximum flexibility.

The use of Object oriented code was used to allow for dynamic creation and movement in

the model, as it could be based on a random number scheme, as opposed to fixed

movement patterns. This meant the need to “instantiate” each instance of a civilian or

threat as well as the non-simulation aware tracker assigned to each return.

The model utilizes random number seeds provided by the outermost function,

called “mainfunction.m.” This feeds the random number seed to be fed to the simulation.

This allows for examination of specific scenarios in which peculiar behavior has been

found or situations in which the ship does not survive that might expose a specific

vulnerability. As detailed later, this exact situation happened in a way not originally

foreseen.

The top-most simulation file is labeled “thesis” and contains all the functional

code necessary to load threats and civilian tracks as well as a separate tracker to keep and

maintain all tracker variables necessary to create and maintain the Kalman filter

variables.

The remainder of the files are object definition files with their constructors and

destructors. The two files labelled “civilian.m” and “threat.m” keep track of the actual

locations of the civilian and threat tracks, respectively. The last file, “tracker.m”, is the

file that contains the locations input by the simulation, with measurement and movement

errors incorporated. The file is not made aware of the simulation space and treats each

track equally. Each instantiation contains the state of the Kalman filter variables.

 18

1. MATLAB Interface

As this model is intended for thesis research and not for an operational

implementation, the simulation code is run inside of shell intended to input random

number seeds and collect results. To that end, there is no graphical user interface.

2. Simulation/Input Parameters

The input files are provided in Table 2. The beginning parameters are provided in

Table 3. The flowchart detailing the simulation process is shown in Figure 6.

Table 2. MATLAB top level functional organization of the STC algorithm.

Function Overview

mainfunction.m

Launches simulation with a random number seed. This allows
specific scenarios to be replayed, either in a loop, or in isolation.
This function also records the result of each simulation, and saves it
to a csv file.

thesis.m

This sets up the simulation environment, calls the appropriate
objects, sets up the logic for the trackers, filters, updates, and feeds
the appropriate location data to the tracker, iterates the tracker, and
updates the simulation world with the results. Additionally, it models
the gun system, registering targets that have been removed from
simulation, and updating the tracker accordingly.

civilian.m Object instantiated and intended to hold location and destination
variables for each civilian track in the simulated world.

threat.m Object instantiated and intended to hold location and destination
variables for each threat track in the simulated world.

tracker.m

Object instantiated for each track, kept purposefully separate, where
the Kalman filter states for each track are kept. Additionally, the
status of each track as to whether it is declared a swarming threat is
held here.

 19

Table 3. Model parameters.

Parameter Value
Ownship starting position 1.5 km, 0.0 km
Total possible Civilian tracks 100–120
Total possible threat tracks 30–50

Possible starting positions of all tracks
In a shipping lane 1.5 km-2.0 km from bottom
of grid,
-15.0 to +15.0 km port and starboard of grid

Gun System Ready and loaded. Reload time is set to 5.0
seconds initially.

 Flowchart diagram of simulation environment. Figure 6.

 20

 Starting points of scenario. Ownship, civilians, and threats are Figure 7.

represented by the blue circle, blue dots, and red dots, respectively.

A possible starting scenario for a given simulation is shown in Figure 7.

“Ownship” is shown by the circle at 15.0 km, 0.0 km. The blue and red dots shown are

civilian and threat actors, respectively. Note that while they show up in the simulation as

being differentiated, the tracker is not informed and only fed positional data.

For the sake of readability, the plots are distorted in axis ratio; however, it is

important to remember that the ratio is misleading. In truth, the ratio of axes, when

viewed at a 1:1 ratio, is as seen in Figure 8.

 Starting points of scenario with actual axes ratio. Figure 8.

 21

Each simulation is randomized; however, in order to maintain a control on the

system, the simulation is fed the random number seed. The simulation is embedded in a

slightly smaller program, where the random number seed, the number of threat ships,

civilian ships, and whether or not the ship survives are recorded.

When a civilian or threat track is instantiated, it is assigned a randomized position

within 15.0 km on either side of the x-axis of ownship, and 1.5 to 2.0 km in the y-axis. A

maximum turning radius is assigned in radians, a maximum speed from 10 to 20 m/s, and

a random destination point from 1.5 to 2.0 km on the y-axis on either edge (0.0 or

30.0 km in the x-axis). For computational purposes, the next position is initialized to the

current position, and the “off edge” flag is set to false (the purpose behind this is detailed

later).

The tracker is then fed all the information on the present position of all tracks,

both civilian and threat, and assigns each ship instantiation a tracker identification

number (trackerid). The reason for this design choice is detailed later. The instantiation of

the tracker object also initializes all the Kalman variables, whether or not the track has

been “deleted.” The differentiation is that civilian tracks are considered “deleted” if they

roll off of the edge, whereas the threat tracks are “deleted” when the gun system destroys

them. A “number of hits” counter is also implemented and initialized, which details the

maturity of the Kalman filter gain as it approaches steady-state accuracy.

The simulation is based on the assumption that a swarm threat is more effective if

the threats are coming from multiple directions, so that when the gun system is

implemented, the gun has to retarget in wide arcs to prevent the closest current threat

from reaching ownship. To that end, each swarming threat has its destination point

immediately re-assigned to an even spacing across the 30.0 km band in the x-axis. This is

to avoid a possible random scenario in which all the threats are approaching ownship in a

single-file line.

The swarm event in the simulation is also randomly assigned per simulation from

120 to 270 seconds after start of simulation. Each threat is set to arrive at its assigned

 22

waypoint at the time of the swarm event time. As this model does not use unrealistic

speeds, the maximum speed for any given threat is capped at 20 m/s.

The next function call is to display the starting points as shown in Figure 7. This

function is called in each iteration to update the plot for each positional change.

The next position for each track is then calculated. This is done by finding the

direction of the current position and the change in direction needed to go to the next

position but capping it at the maximum turning radius called out in the instantiation. This

assumes that the tracks run at maximum speed, even during a turn. Future iterations of

this code can have the ship slow down to make tighter turns. The reason why the next

position was initialized to the present position at instantiation was so that the initial

direction change would be zero. This allows the track to start out in the direction needed

to point to its assigned destination without falling afoul of the maximum turn radius

limitation. Any direction calculated will fall below the maximum turning radius.

At this point, the simulator decides whether or not to assign random movement to

the position due to sea movement. In the current code, 5% of the time, a possible 2.0 m

shift in movement in both x and y-axis is assigned. This is the random position error, not

the measurement error.

The simulator then advances all the tracks to the next position. Note that the

tracker is not updated at this point. This is due entirely to the loop mechanics. While this

skews initial results, there is a simple method to ensure things get back on track, as

detailed later.

The simulator then enters into the main loop, ended only when either ownship is

destroyed or when all threat tracks have been eliminated.

The first check of the main loop is to see if the time of the swarm event has

arrived. If it has, the only aspect of the simulation that is changed is that all of the threat

tracks have their destination positions changed from the edges of the simulation space to

ownship.

 23

The tracks are then displayed at their current positions, and the next position is

calculated but not advanced.

A check is made on all the civilian tracks to determine if the next movement step

exceeds the bounds of the simulation space (threat tracks never exceed the bounds). If it

does, the object’s “off edge” flag is set to “true.” The tracker object assigned tags the

track as “deleted.” A new civilian track is then created and added to the tracker. The only

difference on this created track from the initial instantiations is that the starting position is

assigned to one of the boundaries, and the destination is the opposite boundary. This is

meant to simulate a ship entering the simulation space, as it cannot realistically appear

instantly inside the simulation space. In this way, the number of civilian tracks always

remains constant.

At this point, the number of civilian ships is adjusted so that new ships introduced

are not skipped when setting up internal loops. There was an attempt to use a built-in

function to eliminate tracks when introduced, but unfortunately, it disconnects the trackid

correlation.

The gun system is then called. Originally, the gun system was to be unaware of

the simulation aspect, but it became unwieldy to program. So, the gun system is sent the

tracker array as well as the threat array in the simulation space and the gun state. The gun

system evaluates the state of the gun as well as whether any of the tracks have the

“taggedasthreat” flag (detailed later) set to “true” but are not destroyed. The gun system

then goes through all the threats in such a state and finds the closest one.

The gun system then sets the track array to deleted, the threat array to destroyed,

and plots a red line between ownship and the threat that was destroyed, as seen in Figure

9, and advances the gun system’s state machine.

 24

 Gunfire representation. Ownship, in the blue circle, has destroyed a Figure 9.

threat ship, as represented with the red line.

The gun system state machine is circular, meant to simulate reloading/retargeting,

and can be adjusted per simulation expectations. The states are “ready,” “fired,”, and a

numeric that counts up to five, whereupon the gun returns to the “ready” state. After

firing, and upon each evaluation, the gun system is advanced through its state machine.

At this time there is no ammunition limit, and all shots are fired as if in the carousel with

no delay when loaded in the hoist from the magazine. If desired, future simulations can

incorporate other states, such as randomly requiring a second shot on target, delays due to

inappropriate rounds loaded in carousel, etc.

All tracks are then evaluated to determine the amount of error from the prediction

made at the previous state to the current state. This calculation is only made if the

“number of hits” counter exceeds the predetermined number of Kalman gain adjustments

 25

needed to ensure a steady state for the Kalman filter has been achieved. For this

simulation’s purposes, 70 hits was used.

The tracker is then updated. Both civilian and threat arrays are loaded into the

tracker’s current state for all the tracks, with the tracker being kept ignorant as to whether

or not it is a civilian or threat track that is being updated. The number of hits are

incremented for each state. This is necessary so that new contacts coming in from the

sides do not clutter the simulation space while the Kalman filter for that particular track is

still settling into steady state, as is discussed next.

The next check is made to determine whether or not the minimum amount of

hits/time has passed in which to be able to display the tracker predictions. If this is indeed

the case, the display function is called and passed the entire tracker array as well as the

minimum number of hits necessary to display. The function then evaluates all of the

tracker signals to determine if the track is not deleted and has passed the minimum

number of hits. If all of those checks pass, it then plots the prediction, as seen in Figure

10 and in detail in Figure 11. Note that in Figure 11, there appears to show a directional

bias. This is due to the difference in scale of the x and y-axis, necessary to capture the

image and is not the result of a systemic bias.

 26

 Starting prediction (green marks). Figure 10.

 Closeup of Kalman prediction. Blue points represent actual Figure 11.
measurements, and green points represent predictions from

the previous measurement.

 27

Returning to the main loop, the tracker prediction for the next location is made.

The first step is to make sure that the prediction is not being made for a deleted plot. If

the plot is not deleted, the tracker then advances the Kalman Filter as was mentioned

above. As explained previously, the current location is determined, the estimate is made

from the last prediction by comparison to the current location, the gain adjusted, and the

covariance estimation for use in the next prediction, with a minor exception code when

the measurement is made for the first time.

All arrays and the current time are then fed into an out-of-simulation function that

determines what the error is between the current location and the prediction from the last

position. Once the 70 samples have been taken, the errors are well into steady state, and a

second figure is populated, as seen in Figure 12. When the time of attack is made and a

track is declared a target, it is marked with a red “x” as seen in Figure 13. Note there is

increased density or error at around 0.0562 meters. This is related to the allowed/assumed

noise in the Kalman predictions. When the allowable/assumed noise level is increased,

the dense area is expanded and made less dense; however, the errors are minimal and

several orders of magnitude lower than the swarm notification looked for.

 28

 Kalman filter error measurements. This is the error amount in Figure 12.

distance
from the previous prediction and the current measurement at the time

indicated. The red dots are threat tracks, and the blue dots
are civilian tracks.

 29

 Kalman error measurement at time of swarm attack. The red dots Figure 13.

represent
threat tracks, and the blue dots represent civilian tracks. The red X
represent a threat track that has been identified as such. The error is

measured between the measurement predicted from the previous
measurement and current measurement.

The ships are then advanced. This is accomplished by making the movement

calculated earlier as the next position into the current position. During this check, it is

determined whether any of the current tracks will arrive at ownship. Due to the selected

geometry, this is accomplished with a simple check to determine if the track has crossed

over the x-axis. If it has, ownship is considered destroyed, and one of the two conditions

for ending the main loop has been met.

The simulation then makes a determination as to whether or not all threats have

been eliminated. If all threats have been eliminated, the other condition for ending the

loop has been met, and the loop is ended. If neither condition is met, the loop repeats.

 30

If the loop ends, both screenshots are saved in a time-stamped file, detailing the

number of swarm threats, civilian tracks, the number of threats detected, and whether or

not the ship survived. The information is passed back to the main function, which records

the entire run and records the pertinent data into a Microsoft Excel File.

Please note that due to a MATLAB memory bug, the actual plots are saved to an

array and only plotted at the end. This resulted in a drastic reduction in simulation time

from hours to seconds.

B. MODEL MODIFICATIONS AND RESULTS

An initial run of 2000 simulations was performed using random number seeds

from 1 to 2000. The initial conditions were set per Table 4.

Table 4. Initial modeling conditions

Specification Measurement
Reload Time 5 seconds
Maximum Speed 20 m/s
Spacing of Threats Even across x-axis
Number of threats 30–50

The vast majority of the cases resulted in ownship surviving, as seen in Figure 14.

The ship is able to fend off multiple attackers without them coming close enough for a

suicide attack.

The spike in Figure 15 shows the moment when multiple ships turned from their

original heading toward ownship. The dramatic shift is represented clearly against the

murmur of ordinary civilian traffic.

 31

 Full simulation in which the ship survived, as none of the tracks Figure 14.

reach the blue circle, which represents ownship.

A previously unexamined failure state came to light: in ten out of 2000, or 0.5%,

of the simulations, the threat ship does not sufficiently deviate from its initial heading.

The Kalman filter error rate therefore does not rise above the threshold, and the threat is

able to evade detection, as seen in Figure 16 and Figure 17. In a real-world situation, this

would be easily discovered by the crew on duty, but as detection is based entirely on the

detection via the Kalman Filter, this is considered a failure.

 32

 The Kalman error measurement in the aftermath of an attack. Figure 15.

In the next series of simulation runs, the ship’s firing time was increased to

15 seconds. This simulates any number of failures, from having to shoot multiple times to

the gun system being manually reloaded. For each step, 1000 simulation runs were

conducted, and as detailed in both Figure 18 and Table 5, the ship failure rate

survivability decreased to 24.4%.

In order to find a middle point at which ownship had a decided advantage but was

not succeeding overwhelmingly, the reload time was changed to only double the initial

rate, or 10 seconds, as seen in Table 5. This dramatically increased the survivability of

the system from 24.4% to 88.7%.

 33

 Failure due to insufficient Kalman deviation. Note that the ship has Figure 16.

ample time to fire but does not due to failure to classify the threat ship
as such. Upper image is at true ratio.

Table 5. First set of simulation runs.

Reload Time Maximum
Speed

Spacing of
threats

Number of
threats Survivability

5 20 Even across
x-axis 20–40 99.5%

10 20 Even across
x-axis 20–40 88.7%

15 20 Even across
x-axis 20–40 24.4%

5 20 Even across
x-axis 30–50 99%

 34

 Close-up of threat that remained undetected. The blue line is the Figure 17.

original
heading and green is after the attack commences. Note that it does not

deviate as severely as other threats pictured.

 Catastrophic failure due to reload time increased to 15 seconds. Figure 18.

Note the large number of threats that are not destroyed and still arriving

 35

when the ship is destroyed.

In an effort to find the worst case, it was then decided to consider the case where

all threats attack at the same time from the central point of the shipping channel directly

in front of the ship. It was determined that this was providing ownship with a huge

advantage, as the ships in the center could neutralized easily, with more time to take out

the ships starting the assault from the edges, which have to travel many times the

distance.

The simulation was then altered so that the threat ships attacked from the center.

This can be seen in Figure 19. It became quickly apparent that the ship could no longer

fend off as many ships as originally thought, as seen in Table 6.

 Simulation altered so threats attack closer to ownship in the Figure 19.

middle of the x-axis.

 36

Table 6. Threats with center-spaced threats.

Reload Time Maximum
Speed

Spacing of
threats

Number of
threats Survivability

7 20 Centerline 20 4.9%
5 20 Centerline 20-40 9.6%
7 20 Centerline 15 63.8%
10 20 Centerline 15 5%
8 20 Centerline 15 27.7%

While these are numbers relative to each other, they only demonstrate

survivability with the addition of the Kalman filter. The effectiveness of the Kalman filter

itself has yet to be quantified.

To demonstrate that the Kalman filter actually improved survivability, a series of

simulations in which the Kalman filter was not activated at all were done. In these

demonstrations, the threats are only identified as such when they break free of civilian

traffic. The survivability is increased by the time saved from the commencement of the

attack to being clear of the shipping channel.

A multitude of simulations were run for comparison, as detailed in Table 7.

Survival rates fell across the scenarios by over 40% in some cases.

Table 7. Threats with no Kalman filter.

Reload Time Maximum
Speed

Spacing of
threats

Number of
threats Survivability

7 20 Centerline 15 40.8%
10 20 Centerline 20 0%
10 20 Centerline 15 2.4%
7 20 Centerline 20-40 0%

 37

V. RESULTS

The focus of this thesis was to show that the Kalman filter by itself can detect a

swarm event, even in the middle of civilian traffic. Further, the model itself shows that

survivability is determined by temporal modifications to the model. By that logic, the use

of the Kalman filter for detection, if deployed, would enhance the survivability of

ownship by alerting the crew to a possible event much faster than would be apparent

otherwise.

The framework for the simulation was designed with modularity in mind so that

that future work could change aspects of the simulation quickly.

As the Kalman filter involves minor computational requirements, implementation

would likely be minimally intrusive and low risk. With today’s processing capabilities, if

a radar signal processor was designed with modular cards, it is conceivable to have the

processing capability with only an additional or replacement processing card.

It should also be noted that the entirety of this testing and discrimination of targets

is done without the benefit of any additional sources of information. Additional

discriminators would likely reduce false alarms.

As seen in the multiple thousands of runs, there are three main discriminators to

determine survivability.

The first discriminator of survivability is the reload time of the gun system.

When reload time is increased by seconds, the survivability of the ship changes

drastically. This seems to suggest that the correct response to a swarm threat should be to

maximize efficiency in terms of target destruction. Having to use multiple shots or

spending time re-acquiring after a shot must be decreased through education, drills, and

qualification/certification.

The second discriminator of survivability is the starting distance of the threats

from ownship. When minimized, ownship was able to handle far fewer hostile actors. If

the implementation of this algorithm allows for tighter precision in a given spot, it should

be concentrated on the area of the shipping channel closest to ownship.

 38

The third discriminator of survivability is the number of hostile actors. The

number of attackers became an issue when they all originated their attack from identical

minimal distances from ownship, reducing reaction time.

While reviewing the data, two vulnerabilities to this form of detection became

apparent.

The first was discovered by accident, when the ship failed to trip the Kalman error

threshold. This was due to changing course at a considerable distance such that only a

very slight adjustment was needed. As discussed, in a real-world situation, the crew

would likely observe such a tactic from a far distance and be well prepared for a threat

once it got within proximity.

The second vulnerability, related to the first, is if the threat is aware of the

sensitivity of the Kalman filter, and, rather than turning quickly, performs a slow arc so

as to always remain below the threshold. This would require extremely advanced

knowledge on the part of the attackers, a fair bit of distance, and could be easily screened

out via direction projection of an established track

 39

VI. PROPOSED FUTURE WORK

The future work that can be added on to this model is extensive. While the

purpose of this thesis is simply to show that the Kalman filter can be used as a

discriminator for a given swarm attack, it can be improved upon and further tested.

The first addition would be the inclusion of direction data as a further

discriminator as to determining a ship’s intentions. As an example, while a ship that

breaks its Kalman filter projection should be investigated, if said ship turns away from

ownship, it can be largely discredited as a possible threat until it changes direction again.

With that capability comes the ability to determine if a Navy ship is about to

come under attack while inside a given shipping channel rather than outside of it as in the

current model. Being able to determine if a given ship is getting closer or farther from

ownship, along with the Kalman predictions, would enable a more comprehensive safety

barrier.

Factoring in the size of a ship is a powerful discriminator when determining

threats. Screening out larger ships or by coming up with a weighting system to largely,

but not completely, discredit them as possible threats would quickly knock down the

possible attackers to just the smaller vessels, reducing computational load, enabling

further analysis.

The concept of a “layered defense” could be implemented, along with an

independent modeling system for each gun/missile system. This would provide a more

accurate determination as to the survivability of the ship.

Shipping lanes are not always linear. Solving this problem requires that the

Kalman Filter be able to “learn” the curves in a given area. This can be accomplished by

breaking a given area into small areas and by recording the “normal” movement of ships

through those area in terms of maximum curvature and associated direction for each

given area. From there, it is relatively simple to determine if a ship matches that

allowance. If it deviates from that, it could possibly add to the aforementioned weighting

and provide a further indicator of hostile intent. This could make use of previous work by

 40

Lokukaluge and Soares, whose paper is devoted entirely to the use of the Kalman filter to

track curved motion [8].

One of the ideas that was abandoned due to time constraints was the idea of a

“rolling window” on the detection of events. In a real situation, ships will go over the

threshold randomly and could likely get tagged falsely as a threat. One method of

screening this error out is to use the swarm event against the attackers by only declaring a

swarm event if a number of Kalman Filter error thresholds are exceeded in a given time

period. If the number of events does not exceed a certain amount, the system is much less

likely to declare a swarm event. Of course, this does come with a problem in that

knowledge of this information could make it possible for an enemy to turn sequentially

outside of the timing of the window, not tripping the alert as to a swarm event.

One of the assumptions made originally was that the maritime radar had

instantaneous feedback on all positions and updated instantaneously. The use of a real

maritime radar would likely increase the level of allowable/assumed noise. This would

introduce errors in measurement due to Doppler shifts, scan speeds of the radar, etc. The

amount of time between samples would change between updates, owing to differences in

speed and position of both ownship and external ships.

Another opportunity for future work is to adapt the single-ship swarm detection

Kalman filter into a networked sensor system with networked command and control and

networked weapons systems such as that envisioned in FORCEnet. In a capstone project

for the Naval Postgraduate School in June of 2005 entitled “FORCEnet Implications for a

Coalition Maritime Force” [20], a series of simulations were run in which a High Valued

Asset (HVA) was surrounded by picket ships.

In the simulation, the HVA was then set upon by missiles, with the picket ships

sending present day “track” quality data. This means that the HVA is alerted to the

presence of an incoming threat and left to fend for itself with ownship sensors and

defenses. The use of missiles provides a high-speed analog for the use of swarming

threats, albeit at a much higher speed.

 41

The simulations were then re-run with a simulation of FORCENet in place,

sending “targeting” quality data to all ships, which are able to launch interception

missiles based on the sensors of other ships, even letting other ships fire when missiles on

one platform have become expended.

As shown in this thesis, Kalman filter tracking provides one more advance in

survivability against the swarm threat by providing the sailor with advance warning of

possible dangers. It could prove to be a crucial information component in the age of

asymmetric warfare.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

APPENDIX. MATLAB CODE

The MATLAB code used for this thesis is provided below:

First file: “mainfunction.m”:
function mainfunction()

%initialize passed back values
totalresult=[];

%set to however many Random Numbers you want.
for i=1:2000
 %display the RNS we are currently displaying in case of a crash
 I

 [civ,thr,result]=thesis(i);
 %record the number of civilian tracks created
 totalresult(i,1)=civ;
 %record the number of threat tracks created
 totalresult(i,2)=thr;
 %record whether or not ownship survived this simulation
 totalresult(i,3)=result;
 totalresult(i)
end

%record the result of the entire simulation run and export as CSV
csvwrite('result.csv',totalresult);

end

 44

Second file: “thesis.m”
%%
function [numcivshipsstart,numthrships,boom]=thesis(rns)
%clear the screen
clc

%we don’t want the random number cleared, but we do want everything
else cleared
clearvars -except rns

%set the random number string
rng(rns);

%randomly set the number of civilian tracks
numcivships=floor(rand*100+20)

%record the number of civilian tracks. This is necessary, as the
number will change with rollovers
numcivshipsstart=numcivships;

%randomly set the number of threat tracks
numthrships=floor(rand*20+30)

%randomly set the timing of attack. Note that it is always greater
than two times the filter settling time.
timeofattack=floor(120+rand()*150)

%Used in earlier versions, abandoned in later ones when we centralized
the attack. This was to ensure that the ships would be evenly spaced
across the x axis
threatspacing=30e3/(numthrships+1);

%Initialize the tracker number counter and the fact that there are
threat ships.
tracknum=0;
threatstillexists=true;

%preallocate the number of civilianships objects in the civilian ships
array, and instantiate/run the constructor.
civilianarray(numcivships)=civilian();

%Do the same for the threat ships
threatarray(numthrships)=threat();

%for the tracker array, instantiate all the tracks for both civilian
and threat ships.
trackerarray(numcivships+numthrships)=tracker();

%Global variable for the minimum number of tracks until we consider the
Kalman filter in “steady state”
mintrackersignals=70;

%Initialization loop for all civilian tracks
for i=1:numcivships

 45

%iterate the track number
 tracknum=tracknum+1;

%Run the “newship” routine in the object for each new civilian track
 civilianarray(i)=newship(1);

%set the track number into the instantiated civilian track
 civilianarray(i).trackerid=tracknum;

%set the Kalman filter in the TRACK to the first recorded, randomly
generated location
 trackerarray(tracknum).Q(1)=civilianarray(i).currentx;
 trackerarray(tracknum).Q(2)=civilianarray(i).currenty;
end

%Initialization loop for threat ships
for i=1:numthrships
 %iterate the tracknumber. Note that we did not reset the track
numbers for threats
 tracknum=tracknum+1;

 %run the initialization routine in the object
 threatarray(i)=threat;

 %set the spacing target for each threat (note this goes away in the
central version
 threatarray(i).destx=i*threatspacing;

 %set the speed necessary to get to that point by the time the
attack commences.
 threatarray(i).maxspeed=sqrt((threatarray(i).desty-
threatarray(i).currenty)^2+(threatarray(i).destx-
threatarray(i).currentx)^2)/(timeofattack-1);
 %set the track number for the threat ships
 threatarray(i).trackerid=tracknum;

 %Once again, set the associated track’s initial Kalman filter
location to the initial settings
 trackerarray(tracknum).Q(1)=threatarray(i).currentx;
 trackerarray(tracknum).Q(2)=threatarray(i).currenty;

 %Cap the speed of each threat.
 if threatarray(i).maxspeed>20;
 threatarray(i).maxspeed=20;
 end
end

%Initialize variables (MATLAB complains if you don’t do this)
civdisplay=[];
thrdisplay=[];
trackerpred=[];
civpred=[];
thrpred=[];

 46

%store initial locations into the display arrays
[civdisplay,thrdisplay]=displayarray(civilianarray,threatarray,numcivsh
ips,numthrships,civdisplay,thrdisplay);

%Calculate the next position for civilian and threat tracks
civilianarray=calctime(civilianarray,numcivships);
threatarray=calctime(threatarray,numthrships);

%move the ships (note that “boom” is there just as it is required.)
[civilianarray,boom]=advanceships(civilianarray,numcivships);
[threatarray,boom]=advanceships(threatarray,numthrships);

%Initialize time and gun state
time=0;
gunstate='ready';

%main loop
while (boom==false)&&(threatstillexists==true)
 %increment time, as the main loop doesn’t do it
 time=time+1;
 %Check for time equal to attack time
 if time==timeofattack
 %If it is attack time, change each threat ship towards ownship,
and maximize their speed.
 for i=1:numthrships
 threatarray(i).destx=15e3;
 threatarray(i).desty=0;
 threatarray(i).maxspeed=20;

 end
 end

 %store the position we have advanced to, and calculate the next
position

[civdisplay,thrdisplay]=displayarray(civilianarray,threatarray,numcivsh
ips,numthrships,civdisplay,thrdisplay);
 civilianarray=calctime(civilianarray,numcivships);
 threatarray=calctime(threatarray,numthrships);

 %determine rollover in next position for civilian tracks, and
replace if necessary (threat tracks will never get to the edge)

[civilianarray,trackerarray,tracknum]=determinerollover(civilianarray,t
rackerarray,tracknum);

 %Renumber (technically, there will be more if a ship rolled over,
as the number of tracks have increased)
 numcivships=size(civilianarray,2);

 %Advance the state of the gun system, and also fire on threats if
they exist

[threatarray,trackerarray,gunstate]=gunsystem(threatarray,trackerarray,
gunstate);

 47

 %update the tracker with new positions

[trackerarray]=updatetracker(civilianarray,threatarray,trackerarray);

 %if the master time is after the minimum time to be able to plot
predictions, populate the tracker prediction array
 if time>mintrackersignals %screen out early tracking attempts

trackerpred=plottrackerprediction(trackerarray,mintrackersignals,tracke
rpred);
 end

 %make predictions for the next point in all the tracks
 [trackerarray]=trackerprediction(trackerarray);

 %populate the tracker prediction error for the last prediction to
the current point

[trackerarray,civpred,thrpred]=plottrackererror(civilianarray,threatarr
ay,trackerarray,time,mintrackersignals,civpred,thrpred);

 %Again, advance the ships and determine if the threat ships have
reached the ships
 [civilianarray,boom]=advanceships(civilianarray,numcivships);
 [threatarray,boom]=advanceships(threatarray,numthrships);

 % Determine if all threats have been eliminated, and set flag
accordingly
 threatstillexists=determinethreats(threatarray);

end

%Populate the various figures. As detailed, there is a memory leak in
MATLAB’s plot function when being updated. So we take the various
arrays that we populated earlier and outputting them into their various
figures.
xaxis=[];
yaxis=[];

for i=1:size(civdisplay,1)
 xaxis(i)=civdisplay(i,1);
 yaxis(i)=civdisplay(i,2);
end

figure(1)
plot(xaxis,yaxis,'.b','MarkerSize',10)
xlabel('distance(m)')
ylabel('distance(m)')
hold on;

xaxis=[];
yaxis=[];

for i=1:size(thrdisplay,1)

 48

 xaxis(i)=thrdisplay(i,1);
 yaxis(i)=thrdisplay(i,2);
end

figure(1)
plot(xaxis,yaxis,'.r','MarkerSize',10)
hold on;

xaxis=[];
yaxis=[];

for i=1:size(trackerpred,1)
 xaxis(i)=trackerpred(i,1);
 yaxis(i)=trackerpred(i,2);
end

figure(1)
plot(xaxis,yaxis,'xg','MarkerSize',7)
hold on;

xaxis=[];
yaxis=[];

for i=1:size(civpred,1)
 xaxis(i)=civpred(i,1);
 yaxis(i)=civpred(i,2);
end

figure(2)
plot(xaxis,yaxis,'.b','MarkerSize',10)
hold on

xaxis=[];
yaxis=[];

for i=1:size(thrpred,1)
 xaxis(i)=thrpred(i,1);
 yaxis(i)=thrpred(i,2);
end

figure(2)
plot(xaxis,yaxis,'.r','MarkerSize',10)
xlabel('time(s)')
ylabel('error between previous prediction and measurement(m)')
hold on

filenamebase='';
clockstamp=clock;

%Set the current time as the base for the filename to save off the
figures to
for i=1:6
 filenamebase=strcat(filenamebase,(num2str(floor(clockstamp(i)))),'-
');

 49

end

% If this number is different than the number of threats initially
generated, we know that the threat was able to succeed due to not
deviating sufficiently when attacking
taggedthreats=0
for i=1:numthrships
 if trackerarray(threatarray(i).trackerid).taggedasthreat==1
 taggedthreats=taggedthreats+1;
 end
end

%Add the initial conditions and the number of threat ships identified
into the filename base.
filenamebase=strcat(filenamebase,'C',num2str(numcivshipsstart),'-
T',num2str(numthrships),'-R',num2str(taggedthreats));

%Add whether or not the ship survived
if boom==1
 filenamebase=strcat(filenamebase,'-boom');
end

%Save off the figures
saveas(figure(1),strcat('screenshots\',filenamebase,'-
simulationspace.png'));
saveas(figure(2),strcat('screenshots\',filenamebase,'-
Kalmanerror.png'));

%clear all variables
close all

end

%%
function
[civdisplay,thrdisplay]=displayarray(civarray,threatarray,numcivships,n
umthrships,civdisplay,thrdisplay)

%master lengths
civlength=size(civdisplay,1);
thrlength=size(thrdisplay,1);
j=1;
for i=1:numcivships

 %offedge calculations have been done. If they are not true, go
ahead and display
 if civarray(i).offedge~=true

 civdisplay(civlength+j,1)=civarray(i).currentx;
 civdisplay(civlength+j,2)=civarray(i).currenty;
 j=j+1;
 end
end
j=1;
for i=1:numthrships

 50

 if threatarray(i).destroyed~=true

 %Go ahead and display all. They will never be off edge.
 thrdisplay(thrlength+j,1)=threatarray(i).currentx;
 thrdisplay(thrlength+j,2)=threatarray(i).currenty;
 j=j+1;
 end
end

%Display ownship
figure(1)
plot(15e3,0,'o','MarkerSize',20)

end
%%
function passedarray=calctime(passedarray,numships)

%Go through all ships. If they are not over the edge or destroyed,
calculate the next step. This was needed due to the fact that
instantiated objects needed a one-time calculation of this. Rather
than duplicate the functionality, it calls it here.
for i=1:numships
 if (passedarray(i).offedge~=true)&&(passedarray(i).destroyed~=1)
 passedarray(i)=onetimeposcalc(passedarray(i));
 end

end

return

end
%%
function [passedarray,boom]=advanceships(passedarray,numships)

%Assume the ship survives.
boom=false;
for i=1:numships

 %a check for offedge and non-destruction
 if (passedarray(i).offedge~=true)&&(passedarray(i).destroyed~=1)

 %If true, advance the ships
 passedarray(i).currentx=passedarray(i).nextx;
 passedarray(i).currenty=passedarray(i).nexty;

 %If the advance takes the ship past the ownship at 0, the ship
has been destroyed.
 if passedarray(i).currenty<0
 boom=true;
 end
 end
end

return
end

 51

%%
function civship=newship(isnew)

%Instantiate and run the constructor
civship=civilian;

%Only run this section if the ship is replacing a ship rolling off the
edge
if isnew==0

 %when instantiated, they are aimed at one of the edges. This
sequence makes sure that the ship is placed at the opposite edge
 if civship.destx==0
 civship.currentx=30e3;
 else
 civship.currentx=0;
 end

 %Run the next position calculator.
 civship=onetimeposcalc(civship);
end

%Set the previous direction in order to calculate movement and maintain
maximum turn radius calculations
civship.prevdir=finddir((civship.desty-
civship.currenty),(civship.destx-civship.currentx));

end
%%
function enddir=finddir(y,x)

%This function is needed by the next position calculator to determine
the next position’s direction, especially in light of maximum turn
radius limitations
%y and x are vectors relating the position to the ultimate destination
of the track in question
if x>0
 enddir=atan(y/x);
else
 enddir=-pi+atan(y/x);
end
return
end
%%
function civatposition=onetimeposcalc(civatposition)

 %Calculate the direction that is needed by the craft
 dir=finddir((civatposition.desty-
civatposition.currenty),(civatposition.destx-civatposition.currentx));

 %Calculate whether or not the direction change is over the maximum
allowable turning rate
 if abs(civatposition.prevdir-dir)>civatposition.turningmax

 52

 %If indeed the maximum turning rate has been reached, set to the
allowable direction
 if (civatposition.prevdir-dir)>0
 dir=(civatposition.prevdir-civatposition.turningmax);
 else
 dir=(civatposition.prevdir+civatposition.turningmax);
 end
 end;

%Calculate the next position based on the intermediate or final next
step.

civatposition.nexty=civatposition.currenty+sin(dir)*civatposition.maxsp
eed;

civatposition.nextx=civatposition.currentx+cos(dir)*civatposition.maxsp
eed;

%Add some random jostle into the system
 %Randomize?
 if rand<.05
 range=(rand-.5)*1;
 civatposition.nextx=civatposition.nextx+range;
 civatposition.nexty=civatposition.nexty+range;
 end

 %Set the previous direction for the next calculations
 civatposition.prevdir=dir;

return
end
%%
function [trackarray]=updatetracker(civarray,thrarray,trackarray)

for i=1:size(civarray,2)

 %As long as the track isn’t over the edge, update the tracker to
the current position, and increment the number of hits on each track.
 if civarray(i).offedge~=true
 trackarray(civarray(i).trackerid).Q(1)=civarray(i).currentx;
 trackarray(civarray(i).trackerid).Q(2)=civarray(i).currenty;

trackarray(civarray(i).trackerid).numberofhits=trackarray(civarray(i).t
rackerid).numberofhits+1;
 end
end

for i=1:size(thrarray,2)

 %Do the same for threat ships, but don’t do it for tracks that have
been destroyed.
 if trackarray(thrarray(i).trackerid).deleted~=true
 trackarray(thrarray(i).trackerid).Q(1)=thrarray(i).currentx;
 trackarray(thrarray(i).trackerid).Q(2)=thrarray(i).currenty;

 53

trackarray(thrarray(i).trackerid).numberofhits=trackarray(thrarray(i).t
rackerid).numberofhits+1;
 end
end

end
%%
function [endresult]=determinethreats(thrarray)

%This function simply goes through all threat hits, and determines
whether or not all threats have been destroyed.
endresult=false;

for i=1:size(thrarray,2)

 if thrarray(i).destroyed==0;

 %We found one!
 endresult=true;
 end

end

end
%%
function
[civarray,trackarray,trnum]=determinerollover(civarray,trackarray,trnum
)
%This function determines if any of the civilian tracks will roll over
the edge of the simulation, and sets up a replacement track to roll in
at a randomized method.

%Pull the current size of the civilian array.
maxrecord=size(civarray,2);

%All civilian tracks
for i=1:size(civarray,2)

 %we don’t want to re-evaluate tracks that have already been
declared off edge.
 if civarray(i).offedge==false

 %if over either edge
 if (civarray(i).nextx<=0) || (civarray(i).nextx>=30e3) %rolled
off of edge

 %declare it off edge
 civarray(i).offedge=true;

 %Delete it in the tracker
 trackarray(civarray(i).trackerid).deleted=true;

 increment the tracker number

 54

 trnum=trnum+1;

 %Increment the size of the civilian array
 maxrecord=maxrecord+1;

 %For that new civilian track, instantiate a ship, and run
the constructor
 civarray(maxrecord)=newship(0);

 %set the tracker number in the civilian array
 civarray(maxrecord).trackerid=trnum;

 %Run the onetime position calculator.
 civarray(maxrecord)=onetimeposcalc(civarray(maxrecord));

 %Set the tracker’s Kalman filter position to the current
position
 trackarray(trnum).Q(1)=civarray(i).currentx;
 trackarray(trnum).Q(1)=civarray(i).currenty;
 end;
 end
end

end
%%
function [trackarray]=trackerprediction(trackarray)

%In this Tracker-only function, for every track that isn’t deleted, run
the Kalman Filter prediction
for i=1:size(trackarray,2)
 if trackarray(i).deleted==false
 trackarray(i)=Kalmanfilter(trackarray(i));
 end

end

end
%%
function
trackerpred=plottrackerprediction(trackarray,mintrackersignals,trackerp
red)

%For every track that isn’t deleted, and has the minimum number of
hits, take the Kalman Predictions and store in an independent array.

j=1;

trackerlen=size(trackerpred,1);

for i=1:size(trackarray,2)

 if
(trackarray(i).deleted==false)&&(trackarray(i).numberofhits>mintrackers
ignals)

 55

 trackerpred(trackerlen+j,1)=trackarray(i).Q_estimate(1);
 trackerpred(trackerlen+j,2)=trackarray(i).Q_estimate(2);
 j=j+1;

 end

end

end
%%
function [track]=Kalmanfilter(track)

 % load the given tracking
 track.Q_loc_meas = [track.Q(1); track.Q(2)];

 % do the Kalman filter

 % Predict next state of the Ship with the last state and predicted
motion.
 track.Q_estimate = track.A * track.Q_estimate + track.B * track.u;

 %predict next covariance
 track.P = track.A * track.P * track.A' + track.Ex;

 % Kalman Gain
 track.K = track.P*track.C'*inv(track.C*track.P*track.C'+track.Ez);

 % Update the state estimate.
 if ~isnan(track.Q_loc_meas)
 track.Q_estimate = track.Q_estimate + track.K *
(track.Q_loc_meas - track.C * track.Q_estimate);

 end

 % update covariance estimation.
 track.P = (eye(4)-track.K*track.C)*track.P;

end

%%
function
[trarray,civpred,thrpred]=plottrackererror(civarray,thrarray,trarray,ti
me,mintrackersignals,civpred,thrpred)

j=1;

%Get the size of the civilian and threat array prediction arrays
civlen=size(civpred,1);
thrlen=size(thrpred,1);

for i=1:size(civarray,2)

 56

 %For all civilian tracks that are not off the edge, get the
differential between the previous prediction and the current position.
Also included are a “reset” if needed.
 if (civarray(i).offedge~=true)
 temp=sqrt((civarray(i).currentx-
trarray(civarray(i).trackerid).Q_estimate(1))^2+(civarray(i).currenty-
trarray(civarray(i).trackerid).Q_estimate(2))^2);
 if
((trarray(civarray(i).trackerid).numberofhits)>mintrackersignals)&&(tra
rray(civarray(i).trackerid).deleted==0)
 flux=temp-trarray(civarray(i).trackerid).baseline;
 civpred(civlen+j,1)=time;
 civpred(civlen+j,2)=flux;
 j=j+1;
 else
 trarray(civarray(i).trackerid).baseline=0; %temp;
 end
 end
end

j=1;

%Do the same for the threats
for i=1:size(thrarray,2)
 if (thrarray(i).offedge~=true)
 temp=sqrt((thrarray(i).currentx-
trarray(thrarray(i).trackerid).Q_estimate(1))^2+(thrarray(i).currenty-
trarray(thrarray(i).trackerid).Q_estimate(2))^2);
 if
((trarray(thrarray(i).trackerid).numberofhits)>mintrackersignals)&&(tra
rray(thrarray(i).trackerid).deleted==0)
 flux=temp-trarray(thrarray(i).trackerid).baseline;
 if
(flux>1)&&(trarray(thrarray(i).trackerid).taggedasthreat==0)
 trarray(thrarray(i).trackerid).taggedasthreat=1;
 figure(2)
 plot(time,flux,'xr','MarkerSize',20)
 hold on
 else
 thrpred(thrlen+j,1)=time;
 thrpred(thrlen+j,2)=flux;
 j=j+1;
 %figure(2)
 %plot(time,flux,'.r','MarkerSize',10)
 %hold on
 end

 else
 trarray(thrarray(i).trackerid).baseline=0; %temp;
 end
 end
end

 57

end
%%
function

%This advances the gun system through its various stages and fires on
threats.
[thrarray,trarray,gunstate]=gunsystem(thrarray,trarray,gunstate)

%Set a number ludicrously long distance. Also, set the index number.
comparemin=1e6;
indexmin=1;

%If the gun is ready to fire
if strcmp(gunstate,'ready')

 %Go through all threats
 for i=1:size(thrarray,2)

 %Is the target tagged as a threat and not already destroyed?
 if
(trarray(thrarray(i).trackerid).taggedasthreat==1)&&(thrarray(i).destro
yed~=1)

 %Get the distance from this threat to ownship
 temp=sqrt((thrarray(i).currentx-
15e3)^2+(thrarray(i).currenty)^2);

 %If it is closer than other threats, set as the valid
target
 if temp<comparemin
 comparemin=temp;
 indexmin=i;
 end
 end
 end

 %If we are not set to the far off distance
 if comparemin~=1e6

 %Mark target as destroyed in both tracker and threat array
 trarray(thrarray(indexmin).trackerid).deleted=true;
 thrarray(indexmin).destroyed=1;

 %Draw the destruction line
 figure(1)
 plot([15e3 thrarray(indexmin).currentx],[0
thrarray(indexmin).currenty],'-r','Color','r','LineWidth',1)
 hold on;

 %Set the gun state to fired
 gunstate='fired';
 end
end

 58

%State machine: fired countdown ready, repeat.
if strcmp(gunstate,'fired')
 gunstate=1;
elseif gunstate<5
 gunstate=gunstate+1;
else
 gunstate='ready';
end
end

 59

Third file: “civilian.m”
classdef civilian
 properties
 currentx
 currenty
 nextx
 nexty
 destx
 desty
 maxspeed
 turningmax
 prevdir
 trackerid

 %Initialized as in the simulation space
 offedge=false;

 %Included because the tracker will declare it destroyed,
regardless of type
 destroyed=0;

 %To be included in future add-on work. This will be tripped if
the civilian gets declared a threat.
 falsealert=false;
 end
 methods

 %Civilian constructor
 function civilian=civilian()

 %No restrictions on turning
 civilian.turningmax=2*pi;

 %Set y axis distance randomly
 civilian.currenty=1.5e3+.5e3*rand;

 %For calculation purposes, set the next state to the
current one.
 civilian.nexty=civilian.currenty;

 %Set destination y axis randomly.
 civilian.desty=1.5e3+.5e3*rand;

 %Randomly set speed
 civilian.maxspeed=10+10*rand;

 %Randomly set x position (overwritten if a roll-off
replacement)
 civilian.currentx=rand*30e3;

 %Randomly set x axis destination
 if rand>.5
 civilian.destx=0;
 else
 civilian.destx=30e3;

 60

 end

 %Once again, set for calculation purposes
 civilian.nextx=civilian.currentx;
 end

 end
end

 61

Fourth file: “threat.m”
classdef threat
 properties
 currentx
 currenty
 nextx
 nexty
 destx
 desty
 maxspeed
 turningmax
 prevdir
 trackerid

 %Threat isn’t destroyed yet!
 destroyed=0;

 %Needed for compatibility with other tracker functions
 offedge=false;

 end
 methods
 function threat=threat()

 %Threat ships can’t turn as fast!
 threat.turningmax=pi/4;

 %Random y axis placement
 threat.currenty=1.5e3+.5e3*rand;

 %Needed for calculation reasons
 threat.nexty=threat.currenty;

 %Destination pre attack-time
 threat.desty=1.5e3+.5e3*rand;

 %Set the max speed (will be overwritten immediately
afterwards)
 threat.maxspeed=10+10*rand;

 %Randomly set x axis location
 threat.currentx=rand*30e3;

 %Randomly set pre-attack destinations
 if rand>.5
 threat.destx=0;
 else
 threat.destx=30e3;
 end

 %Randomly set current x axis location
 threat.nextx=threat.currentx;
 end
 end

end

 62

Fifth file: “tracker.m”
classdef tracker
 properties
 offedge=false;
 error
 baseline
 deleted=false;

 %record number of hits, only display after the wild errors are
removed
 numberofhits=0;
 taggedasthreat=0;

 % maximum acceleration magnitude
 u = .005;

 %First two are immediately changed to the first location
settings upon instantiation
 Q= [0;0; 0; 0];

 %estimate of initial location estimation of where the target is
(what we are updating)
 Q_estimate = [0;0; 0; 0];

 %Maximum noise in x and y direction
 xnoise = 1;
 ynoise = 1;

 %Maximum noise in matrix form. I was trying to put the noise
into this form after a variable define, but Matlab didn’t like it.
 Ez = [1 0; 0 1];

 %These are the update movement model matrix and covariance
matrix model. For the purposes of MATLAB, I needed to define them
separate, but the Covariance is initialized to be the same as the
other. The (.1) at the end is the movement noise
 Ex = [1/4 0 1/2 0; ...
 0 1/4 0 1/2; ...
 1/2 0 1 0; ...
 0 1/2 0 1].*(.1)^2;
 P = [1/4 0 1/2 0; ...
 0 1/4 0 1/2; ...
 1/2 0 1 0; ...
 0 1/2 0 1].*(.1)^2;

 % (Coefficent matrices):

 %State Update Matrix
 A = [1 0 1 0; 0 1 0 1; 0 0 1 0; 0 0 0 1];

 %Velocity Matrix
 B = [(1/2); (1/2); 1; 1];

 %Measurement Function
 C = [1 0 0 0; 0 1 0 0];

 63

 %Initialization of the Kalman Gain
 K = [];

 %Location measurement instantiation.
 Q_loc_meas
 end

 methods

 %There so there is a constructor method, but nothing is
declared.
 function tracker=tracker()

 end

 end
end

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

LIST OF REFERENCES

[1] W. S. Lind, “Understanding fourth generation war,” Military Review, pp. 12–16,
September-October 2004.

[2] J. Arquilla and D. Ronfeldt, Swarming and the Future of Conflict. Santa Monica,
CA: RAND Corporation, 2000.

[3] A. Tiwari, “Small boat and swarm defense: A gap study.” M.S. thesis, Dept
Modeling, Virtual Env., and Simulation, Naval Postgraduate School, 2008.

[4] J. Handwork, “NSA-PC brings SWARMEX to successful close,” Department of
the Navy, [Online]. Available:
http://www.navy.mil/submit/display.asp?story_id=12464. [Accessed 03 May
2015].

[5] Raytheon. “Phalanx close-in weapon system.” [Online]. Available:
http://www.raytheon.com/capabilities/products/phalanx/. [Accessed 13 May
2015].

[6] D. Cobian, “Sea Javeline: An analysis of naval force protection alternatives.”
M.A. thesis, Grad. Sch. Bus. & Pub. Policy, Naval Postgraduate School, 2002.

[7] W. D. Shannon, “Swarm tactics and the doctrinal void: Lessons from the Chechen
wars.” M.S. thesis, Dept. Nat’l. Sec. Affairs, Naval Postgraduate School, 2008.

[8] L. P. Perara and C. G. Soares, “Ocean vessel trajectory estimation and prediction
based on extended Kalman filter,” in The Second International Conference on
Adaptive and Self-Adaptive Systems and Applications, 2010.

[9] A. Stateczny and W. Kazimierski, “A concept of decentralized fusion of maritime
radar targets with multisensor Kalman filter,” Vilnius, Lithuania, 16–18 June
2010.

[10] L. S. Terjesen, “Navigation system design and state estimation for a small Rigid
Hull Inflatable Boat (RHIB).” M.S. thesis, Dept. Mech. & Aerospace Eng., Naval
Postgraduate School, 2014.

[11] P. Jeffrey L. Plume, “U.S. Navy seaborne targets—New directions in a time of
change,” in 47th Annual NDIA Targets, UAV's and Range Operations Symposium
and Exhibition, 2003.

[12] A. Fuard. “Sea Tigers adopting suicide attack tactics,” Sunday Times Newspaper,
17 February 2008. [Online]. Available:
http://www.sundaytimes.lk/080217/News/news0021.html. [Accessed 13 May
2014].

 66

[13] Ministry of Defence, “Humanitarian Operation Factual Analysis July 2006-May
2009,” Democratic Socialist Republic of Sri Lanka, 2011.

[14] F. Haghshenass. “Iran's doctrine of asymmetric naval warfare,” The Washington
Institute, 21 December 2006. [Online]. Available:
http://www.washingtoninstitute.org/policy-analysis/view/irans-doctrine-of-
asymmetric-naval-warfare. [Accessed 13 May 2015].

[15] Jane's Navy International, “Sri Lanka learns to counter Sea Tigers' swarm tactics,”
Jane's Navy International, pp. 20–25, 2009.

[16] M. B. Deitchman, “Opportunities in power projection and integrated defense,” in
ONR Naval S&T Partnership Conference and ASNE Expo, 2012.

[17] R. E. Kálmán, “A new approach to linear filtering and prediction problems,”
Research Institute for Advanced Study, vol. Series D, no. 82, p. 12, 1960.

[18] N. D. Crump, “A Kalman Filter approach to the deconvolution of seismic
signals.” Society of Exploration Geophysicists, 1972.

[19] “Object tracking with Kalman filter! (in amazing 2-d!).” Student Dave's Tutorials,
[Online]. Available: http://studentdavestutorials.weebly.com/object-tracking-2d-
kalman-filter.html. [Accessed May 2014].

[20] J. Carnes, C. Coy, B. Dantimo, V. Davila, M. Edwards, R. Fong, J. Hill, A.
Hyder, B. Kokes, J. Lim, J. Lomeli, C. Smith and H. Wang, “FORCEnet
implications for a coalition maritime force,” Monterey, CA: Naval Postgraduate
School, June 2006

 67

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

	I. Introduction
	A. Thesis Objective
	B. Related Work

	II. Background
	A. HSMST THREAT
	B. Kalman filters

	III. Kalman filter
	IV. Implementation and results
	A. Matlab Model
	1. MATLAB Interface
	2. Simulation/Input Parameters

	B. Model Modifications and results

	V. results
	VI. Proposed future work
	Appendix. MATLAB CODE
	List of references
	initial distribution list

